H5 游戏开发:推金币

2017/11/10 · HTML5 · 1
评论 ·
游戏

原文出处: 凹凸实验室   

近期参与开发的一款「京东11.11推金币赢现金」(已下线)小游戏一经发布上线就在朋友圈引起大量传播。看到大家玩得不亦乐乎,同时也引发不少网友激烈讨论,有的说很带劲,有的大呼被套路被耍猴(无奈脸),这都与我的预期相去甚远。在相关业务数据呈呈上涨过程中,曾一度被微信「有关部门」盯上并要求做出调整,真是受宠若惊。接下来就跟大家分享下开发这款游戏的心路历程。

H5游戏开发:贪吃蛇

2017/09/28 · HTML5 · 1
评论 ·
游戏

原文出处:
凹凸实验室   

图片 1
贪吃蛇的经典玩法有两种:

  1. 积分闯关
  2. 一吃到底

第一种是笔者小时候在掌上游戏机最先体验到的(不小心暴露了年龄),具体玩法是蛇吃完一定数量的食物后就通关,通关后速度会加快;第二种是诺基亚在1997年在其自家手机上安装的游戏,它的玩法是吃到没食物为止。笔者要实现的就是第二种玩法。

背景介绍

一年一度的双十一狂欢购物节即将拉开序幕,H5
互动类小游戏作为京东微信手Q营销特色玩法,在今年预热期的第一波造势中,势必要玩点新花样,主要肩负着社交传播和发券的目的。推金币以传统街机推币机为原型,结合手机强大的能力和生态衍生出可玩性很高的玩法。

MVC设计模式

基于贪吃蛇的经典,笔者在实现它时也使用一种经典的设计模型:MVC(即:Model
– View – Control)。游戏的各种状态与数据结构由 Model 来管理;View
用于显示 Model 的变化;用户与游戏的交互由 Control 完成(Control
提供各种游戏API接口)。

Model 是游戏的核心也是本文的主要内容;View 会涉及到部分性能问题;Control
负责业务逻辑。 这样设计的好处是: Model完全独立,View 是 Model
的状态机,Model 与 View 都由 Control 来驱动。

前期预研

在体验过 AppStore 上好几款推金币游戏 App
后,发现游戏核心模型还是挺简单的,不过 H5
版本的实现在网上很少见。由于团队一直在做 2D 类互动小游戏,在 3D
方向暂时没有实际的项目输出,然后结合此次游戏的特点,一开始想挑战用 3D
来实现,并以此项目为突破口,跟设计师进行深度合作,抹平开发过程的各种障碍。

图片 2

由于时间紧迫,需要在短时间内敲定方案可行性,否则项目延期人头不保。在快速尝试了
Three.js + Ammo.js 方案后,发现不尽人意,最终因为各方面原因放弃了 3D
方案,主要是不可控因素太多:时间上、设计及技术经验上、移动端 WebGL
性能表现上,主要还是业务上需要对游戏有绝对的控制,加上是第一次接手复杂的小游戏,担心项目无法正常上线,有点保守,此方案遂卒。

如果读者有兴趣的话可以尝试下 3D 实现,在建模方面,首推
Three.js
,入手非常简单,文档和案例也非常详实。当然入门的话必推这篇
Three.js入门指南,另外同事分享的这篇
Three.js
现学现卖
也可以看看,这里奉上粗糙的 推金币 3D 版
Demo

Model

看一张贪吃蛇的经典图片。

图片 3

贪吃蛇有四个关键的参与对象:

  1. 蛇(snake)
  2. 食物(food)
  3. 墙(bounds)
  4. 舞台(zone)

舞台是一个 m * n
的矩阵(二维数组),矩阵的索引边界是舞台的墙,矩阵上的成员用于标记食物和蛇的位置。

空舞台如下:

[ [0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0], ]

1
2
3
4
5
6
7
8
9
10
11
12
[
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
]

食物(F)和蛇(S)出现在舞台上:

[ [0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0],
[0,0,F,0,0,0,0,0,0,0], [0,0,0,S,S,S,S,0,0,0],
[0,0,0,0,0,0,S,0,0,0], [0,0,0,0,S,S,S,0,0,0],
[0,0,0,0,S,0,0,0,0,0], [0,0,0,0,S,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0], [0,0,0,0,0,0,0,0,0,0], ]

1
2
3
4
5
6
7
8
9
10
11
12
[
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,F,0,0,0,0,0,0,0],
[0,0,0,S,S,S,S,0,0,0],
[0,0,0,0,0,0,S,0,0,0],
[0,0,0,0,S,S,S,0,0,0],
[0,0,0,0,S,0,0,0,0,0],
[0,0,0,0,S,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
]

由于操作二维数组不如一维数组方便,所以笔者使用的是一维数组, 如下:

JavaScript

[ 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,F,0,0,0,0,0,0,0,
0,0,0,S,S,S,S,0,0,0, 0,0,0,0,0,0,S,0,0,0, 0,0,0,0,S,S,S,0,0,0,
0,0,0,0,S,0,0,0,0,0, 0,0,0,0,S,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0, ]

1
2
3
4
5
6
7
8
9
10
11
12
[
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,F,0,0,0,0,0,0,0,
0,0,0,S,S,S,S,0,0,0,
0,0,0,0,0,0,S,0,0,0,
0,0,0,0,S,S,S,0,0,0,
0,0,0,0,S,0,0,0,0,0,
0,0,0,0,S,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
]

舞台矩阵上蛇与食物只是舞台对二者的映射,它们彼此都有独立的数据结构:

  • 蛇是一串坐标索引链表;
  • 食物是一个指向舞台坐标的索引值。

技术选型

放弃了 3D 方案,在 2D 技术选型上就很从容了,最终确定用
CreateJS + Matter.js 组合作为渲染引擎和物理引擎,理由如下:

  • CreateJS
    在团队内用得比较多,有一定的沉淀,加上有老司机带路,一个字「稳」;
  • Matter.js
    身材纤细、文档友好,也有同事试玩过,完成需求绰绰有余。

蛇的活动

蛇的活动有三种,如下:

  • 移动(move)
  • 吃食(eat)
  • 碰撞(collision)

技术实现

因为是 2D 版本,所以不需要建各种模型和贴图,整个游戏场景通过 canvas
绘制,覆盖在背景图上,然后再做下机型适配问题,游戏主场景就处理得差不多了,其他跟
3D
思路差不多,核心元素包含障碍物、推板、金币、奖品和技能,接下来就分别介绍它们的实现思路。

移动

蛇在移动时,内部发生了什么变化?

图片 4

蛇链表在一次移动过程中做了两件事:向表头插入一个新节点,同时剔除表尾一个旧节点。用一个数组来代表蛇链表,那么蛇的移动就是以下的伪代码:

JavaScript

function move(next) { snake.pop() & snake.unshift(next); }

1
2
3
function move(next) {
snake.pop() & snake.unshift(next);
}

数组作为蛇链表合适吗?
这是笔者最开始思考的问题,毕竟数组的 unshift & pop
可以无缝表示蛇的移动。不过,方便不代表性能好,unshift
向数组插入元素的时间复杂度是 O(n), pop 剔除数组尾元素的时间复杂度是
O(1)。

蛇的移动是一个高频率的动作,如果一次动作的算法复杂度为 O(n)
并且蛇的长度比较大,那么游戏的性能会有问题。笔者想实现的贪吃蛇理论上讲是一条长蛇,所以笔者在本文章的回复是
—— 数组不适合作为蛇链表

蛇链表必须是真正的链表结构。
链表删除或插入一个节点的时间复杂度为O(1),用链表作为蛇链表的数据结构能提高游戏的性能。javascript
没有现成的链表结构,笔者写了一个叫
Chain 的链表类,Chain
提供了 unshfit & pop。以下伪代码是创建一条蛇链表:

JavaScript

let snake = new Chain();

1
let snake = new Chain();

由于篇幅问题这里就不介绍 Chain 是如何实现的,有兴趣的同学可以移步到:

障碍物

通过审稿确定金币以及奖品的活动区域,然后把活动区域之外的区域都作为障碍物,用来限制金币的移动范围,防止金币碰撞时超出边界。这里可以用
Matter.js 的 Bodies.fromVertices
方法,通过传入边界各转角的顶点坐标一次性绘制出形状不规则的障碍物。 不过
Matter.js 在渲染不规则形状时存在问题,需要引入
poly-decomp 做兼容处理。

图片 5

JavaScript

World.add(this.world, [ Bodies.fromVertices(282, 332,[ // 顶点坐标 {
x: 0, y: 0 }, { x: 0, y: 890 }, { x: 140, y: 815 }, { x: 208, y: 614 },
{ x: 548, y: 614 }, { x: 612, y: 815 }, { x: 750, y: 890 }, { x: 750, y:
0 } ]) ]);

1
2
3
4
5
6
7
8
9
10
11
12
13
World.add(this.world, [
  Bodies.fromVertices(282, 332,[
    // 顶点坐标
    { x: 0, y: 0 },
    { x: 0, y: 890 },
    { x: 140, y: 815 },
    { x: 208, y: 614 },
    { x: 548, y: 614 },
    { x: 612, y: 815 },
    { x: 750, y: 890 },
    { x: 750, y: 0 }
  ])
]);

吃食 & 碰撞

「吃食」与「碰撞」区别在于吃食撞上了「食物」,碰撞撞上了「墙」。笔者认为「吃食」与「碰撞」属于蛇一次「移动」的三个可能结果的两个分支。蛇移动的三个可能结果是:「前进」、「吃食」和「碰撞」。

回头看一下蛇移动的伪代码:

JavaScript

function move(next) { snake.pop() & snake.unshift(next); }

1
2
3
function move(next) {
snake.pop() & snake.unshift(next);
}

代码中的 next
表示蛇头即将进入的格子的索引值,只有当这个格子是0时蛇才能「前进」,当这个格子是
S 表示「碰撞」自己,当这个格子是 F表示吃食。

好像少了撞墙?
笔者在设计过程中,并没有把墙设计在舞台的矩阵中,而是通过索引出界的方式来表示撞墙。简单地说就是
next === -1 时表示出界和撞墙。

以下伪代码表示蛇的整上活动过程:

JavaScript

// B 表示撞墙 let cell = -1 === next ? B : zone[next]; switch(cell) {
// 吃食 case F: eat(); break; // 撞到自己 case S: collision(S); break;
// 撞墙 case B: collision(B): break; // 前进 default: move; }

1
2
3
4
5
6
7
8
9
10
11
12
// B 表示撞墙
let cell = -1 === next ? B : zone[next];
switch(cell) {
// 吃食
case F: eat(); break;
// 撞到自己
case S: collision(S); break;
// 撞墙
case B: collision(B): break;
// 前进
default: move;
}

推板

  • 创建:CreateJS 根据推板图片创建 Bitmap
    对象比较简单,就不详细讲解了。这里着重讲下推板刚体的创建,主要是跟推板
    Bitmap
    信息进行同步。因为推板视觉上表现为梯形,所以这里用的梯形刚体,实际上方形也可以,只要能跟周围障碍物形成封闭区域,防止出现缝隙卡住金币即可,创建的刚体直接挂载到推板对象上,方便后续随时提取(金币的处理也是一样),代码大致如下:
JavaScript

var bounds = this.pusher.getBounds(); this.pusher.body =
Matter.Bodies.trapezoid( this.pusher.x, this.pusher.y, bounds.width,
bounds.height }); Matter.World.add(this.world,
\[this.pusher.body\]);

<table>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="odd">
<td><div class="crayon-nums-content" style="font-size: 13px !important; line-height: 15px !important;">
<div class="crayon-num" data-line="crayon-5b8f3a3238851771206130-1">
1
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238851771206130-2">
2
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238851771206130-3">
3
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238851771206130-4">
4
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238851771206130-5">
5
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238851771206130-6">
6
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238851771206130-7">
7
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238851771206130-8">
8
</div>
</div></td>
<td><div class="crayon-pre" style="font-size: 13px !important; line-height: 15px !important; -moz-tab-size:4; -o-tab-size:4; -webkit-tab-size:4; tab-size:4;">
<div id="crayon-5b8f3a3238851771206130-1" class="crayon-line">
var bounds = this.pusher.getBounds();
</div>
<div id="crayon-5b8f3a3238851771206130-2" class="crayon-line crayon-striped-line">
this.pusher.body = Matter.Bodies.trapezoid(
</div>
<div id="crayon-5b8f3a3238851771206130-3" class="crayon-line">
  this.pusher.x,
</div>
<div id="crayon-5b8f3a3238851771206130-4" class="crayon-line crayon-striped-line">
  this.pusher.y,
</div>
<div id="crayon-5b8f3a3238851771206130-5" class="crayon-line">
  bounds.width,
</div>
<div id="crayon-5b8f3a3238851771206130-6" class="crayon-line crayon-striped-line">
  bounds.height
</div>
<div id="crayon-5b8f3a3238851771206130-7" class="crayon-line">
});
</div>
<div id="crayon-5b8f3a3238851771206130-8" class="crayon-line crayon-striped-line">
Matter.World.add(this.world, [this.pusher.body]);
</div>
</div></td>
</tr>
</tbody>
</table>

  • 伸缩:由于推板会沿着视线方向前后移动,为了达到近大远小效果,所以需要在推板伸长和收缩过程中进行缩放处理,这样也可以跟两侧的障碍物边沿进行贴合,让场景看起来更具真实感(伪
    3D),当然金币和奖品也需要进行同样的处理。由于推板是自驱动做前后伸缩移动,所以需要对推板及其对应的刚体进行位置同步,这样才会与金币刚体产生碰撞达到推动金币的效果。同时在外部改变(伸长技能)推板最大长度时,也需要让推板保持均匀的缩放比而不至于突然放大/缩小,所以整个推板代码逻辑包含方向控制、长度控制、速度控制、缩放控制和同步控制,代码大致如下:
JavaScript

var direction, velocity, ratio, deltaY, minY = 550, maxY = 720,
minScale = .74; Matter.Events.on(this.engine, 'beforeUpdate',
function (event) { // 长度控制(点击伸长技能时) if
(this.isPusherLengthen) { velocity = 90; this.pusherMaxY = maxY; }
else { velocity = 85; this.pusherMaxY = 620; } // 方向控制 if
(this.pusher.y &gt;= this.pusherMaxY) { direction = -1; //
移动到最大长度时结束伸长技能 this.isPusherLengthen = false; } else
if (this.pusher.y &lt;= this.pusherMinY) { direction = 1; } //
速度控制 this.pusher.y += direction \* velocity; //
缩放控制,在最大长度变化时保持同样的缩放量,防止突然放大/缩小 ratio
= (1 - minScale) \* ((this.pusher.y - minY) / (maxY - minY))
this.pusher.scaleX = this.pusher.scaleY = minScale + ratio; //
同步控制,刚体跟推板位置同步 Body.setPosition(this.pusher.body, { x:
this.pusher.x, y: this.pusher.y }); })

<table>
<colgroup>
<col style="width: 50%" />
<col style="width: 50%" />
</colgroup>
<tbody>
<tr class="odd">
<td><div class="crayon-nums-content" style="font-size: 13px !important; line-height: 15px !important;">
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-1">
1
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-2">
2
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-3">
3
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-4">
4
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-5">
5
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-6">
6
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-7">
7
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-8">
8
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-9">
9
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-10">
10
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-11">
11
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-12">
12
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-13">
13
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-14">
14
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-15">
15
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-16">
16
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-17">
17
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-18">
18
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-19">
19
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-20">
20
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-21">
21
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-22">
22
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-23">
23
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-24">
24
</div>
<div class="crayon-num" data-line="crayon-5b8f3a3238855483243812-25">
25
</div>
<div class="crayon-num crayon-striped-num" data-line="crayon-5b8f3a3238855483243812-26">
26
</div>
</div></td>
<td><div class="crayon-pre" style="font-size: 13px !important; line-height: 15px !important; -moz-tab-size:4; -o-tab-size:4; -webkit-tab-size:4; tab-size:4;">
<div id="crayon-5b8f3a3238855483243812-1" class="crayon-line">
var direction, velocity, ratio, deltaY, minY = 550, maxY = 720, minScale = .74;
</div>
<div id="crayon-5b8f3a3238855483243812-2" class="crayon-line crayon-striped-line">
Matter.Events.on(this.engine, 'beforeUpdate', function (event) {
</div>
<div id="crayon-5b8f3a3238855483243812-3" class="crayon-line">
  // 长度控制(点击伸长技能时)
</div>
<div id="crayon-5b8f3a3238855483243812-4" class="crayon-line crayon-striped-line">
  if (this.isPusherLengthen) {
</div>
<div id="crayon-5b8f3a3238855483243812-5" class="crayon-line">
    velocity = 90;
</div>
<div id="crayon-5b8f3a3238855483243812-6" class="crayon-line crayon-striped-line">
    this.pusherMaxY = maxY;
</div>
<div id="crayon-5b8f3a3238855483243812-7" class="crayon-line">
  } else {
</div>
<div id="crayon-5b8f3a3238855483243812-8" class="crayon-line crayon-striped-line">
    velocity = 85;
</div>
<div id="crayon-5b8f3a3238855483243812-9" class="crayon-line">
    this.pusherMaxY = 620;
</div>
<div id="crayon-5b8f3a3238855483243812-10" class="crayon-line crayon-striped-line">
  }
</div>
<div id="crayon-5b8f3a3238855483243812-11" class="crayon-line">
  // 方向控制
</div>
<div id="crayon-5b8f3a3238855483243812-12" class="crayon-line crayon-striped-line">
  if (this.pusher.y &gt;= this.pusherMaxY) {
</div>
<div id="crayon-5b8f3a3238855483243812-13" class="crayon-line">
    direction = -1;
</div>
<div id="crayon-5b8f3a3238855483243812-14" class="crayon-line crayon-striped-line">
    // 移动到最大长度时结束伸长技能
</div>
<div id="crayon-5b8f3a3238855483243812-15" class="crayon-line">
    this.isPusherLengthen = false;
</div>
<div id="crayon-5b8f3a3238855483243812-16" class="crayon-line crayon-striped-line">
  } else if (this.pusher.y &lt;= this.pusherMinY) {
</div>
<div id="crayon-5b8f3a3238855483243812-17" class="crayon-line">
    direction = 1;
</div>
<div id="crayon-5b8f3a3238855483243812-18" class="crayon-line crayon-striped-line">
  }
</div>
<div id="crayon-5b8f3a3238855483243812-19" class="crayon-line">
  // 速度控制
</div>
<div id="crayon-5b8f3a3238855483243812-20" class="crayon-line crayon-striped-line">
  this.pusher.y += direction * velocity;
</div>
<div id="crayon-5b8f3a3238855483243812-21" class="crayon-line">
  // 缩放控制,在最大长度变化时保持同样的缩放量,防止突然放大/缩小
</div>
<div id="crayon-5b8f3a3238855483243812-22" class="crayon-line crayon-striped-line">
  ratio = (1 - minScale) * ((this.pusher.y - minY) / (maxY - minY))
</div>
<div id="crayon-5b8f3a3238855483243812-23" class="crayon-line">
  this.pusher.scaleX = this.pusher.scaleY = minScale + ratio;
</div>
<div id="crayon-5b8f3a3238855483243812-24" class="crayon-line crayon-striped-line">
  // 同步控制,刚体跟推板位置同步
</div>
<div id="crayon-5b8f3a3238855483243812-25" class="crayon-line">
  Body.setPosition(this.pusher.body, { x: this.pusher.x, y: this.pusher.y });
</div>
<div id="crayon-5b8f3a3238855483243812-26" class="crayon-line crayon-striped-line">
})
</div>
</div></td>
</tr>
</tbody>
</table>

  • 遮罩:推板伸缩实际上是通过改变坐标来达到位置上的变化,这样存在一个问题,就是在其伸缩时必然会导致缩进的部分「溢出」边界而不是被遮挡。

图片 6

所以需要做遮挡处理,这里用 CreateJS 的 mask
遮罩属性可以很好的做「溢出」裁剪:

JavaScript

var shape = new createjs.Shape();
shape.graphics.beginFill(‘#ffffff’).drawRect(0, 612, 750, 220);
this.pusher.mask = shape

1
2
3
var shape = new createjs.Shape();
shape.graphics.beginFill(‘#ffffff’).drawRect(0, 612, 750, 220);
this.pusher.mask = shape

最终效果如下:

图片 7

随机投食

随机投食是指随机挑选舞台的一个索引值用于映射食物的位置。这似乎很简单,可以直接这样写:

JavaScript

// 伪代码 food = Math.random(zone.length) >> 0;

1
2
// 伪代码
food = Math.random(zone.length) >> 0;

如果考虑到投食的前提 ——
不与蛇身重叠,你会发现上面的随机代码并不能保证投食位置不与蛇身重叠。由于这个算法的安全性带有赌博性质,且把它称作「赌博算法」。为了保证投食的安全性,笔者把算法扩展了一下:

JavaScript

// 伪代码 function feed() { let index = Math.random(zone.length)
>> 0; // 当前位置是否被占用 return zone[index] === S ? feed() :
index; } food = feed();

1
2
3
4
5
6
7
// 伪代码
function feed() {
let index = Math.random(zone.length) >> 0;
// 当前位置是否被占用
return zone[index] === S ? feed() : index;
}
food = feed();

上面的代码虽然在理论上可以保证投食的绝对安全,不过笔者把这个算法称作「不要命的赌徒算法」,因为上面的算法有致命的BUG
—— 超长递归 or 死循环。

为了解决上面的致命问题,笔者设计了下面的算法来做随机投食:

JavaScript

// 伪代码 function feed() { // 未被占用的空格数 let len = zone.length –
snake.length; // 无法投食 if(len === 0) return ; // zone的索引 let index
= 0, // 空格计数器 count = 0, // 第 rnd 个空格子是最终要投食的位置 rnd =
Math.random() * count >> 0 + 1; // 累计空格数 while(count !==
rnd) { // 当前格子为空,count总数增一 zone[index++] === 0 && ++count;
} return index – 1; } food = feed();

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 伪代码
function feed() {
// 未被占用的空格数
let len = zone.length – snake.length;
// 无法投食
if(len === 0) return ;
// zone的索引
let index = 0,
// 空格计数器
count = 0,
// 第 rnd 个空格子是最终要投食的位置
rnd = Math.random() * count >> 0 + 1;
// 累计空格数
while(count !== rnd) {
// 当前格子为空,count总数增一
zone[index++] === 0 && ++count;
}
return index – 1;
}
food = feed();

这个算法的平均复杂度为 O(n/2)。由于投食是一个低频操作,所以
O(n/2)的复杂度并不会带来任何性能问题。不过,笔者觉得这个算法的复杂度还是有点高了。回头看一下最开始的「赌博算法」,虽然「赌博算法」很不靠谱,但是它有一个优势
—— 时间复杂度为 O(1)。

「赌博算法」的靠谱概率 = (zone.length – snake.length) /
zone.length。snake.length
是一个动态值,它的变化范围是:0 ~ zone.length。推导出「赌博算法」的平均靠谱概率是:

「赌博算法」平均靠谱概率 = 50%

看来「赌博算法」还是可以利用一下的。于是笔者重新设计了一个算法:

新算法的平均复杂度可以有效地降低到 O(n/4),人生有时候需要点运气 : )。

金币

按正常思路,应该在点击屏幕时就在出币口创建金币刚体,让其在重力作用下自然掉落和回弹。但是在调试过程中发现,金币掉落后跟台面上其他金币产生碰撞会导致乱飞现象,甚至会卡到障碍物里面去(原因暂未知),后面改成用
TweenJS 的 Ease.bounceOut
来实现金币掉落动画,让金币掉落变得更可控,同时尽量接近自然掉落效果。这样金币从创建到消失过程就被拆分成了三个阶段:

  • 第一阶段

点击屏幕从左右移动的出币口创建金币,然后掉落到台面。需要注意的是,由于创建金币时是通过
appendChild 方式加入到舞台的,这样金币会非常有规律的在 z
轴方向上叠加,看起来非常怪异,所以需要随机设置金币的
z-index,让金币叠加更自然,伪代码如下:

JavaScript

var index = Utils.getRandomInt(1, Game.coinContainer.getNumChildren());
Game.coinContainer.setChildIndex(this.coin, index);

1
2
var index = Utils.getRandomInt(1, Game.coinContainer.getNumChildren());
Game.coinContainer.setChildIndex(this.coin, index);
  • 第二阶段

由于金币已经不需要重力场,所以需要设置物理世界的重力为
0,这样金币不会因为自身重量(需要设置重量来控制碰撞时移动的速度)做自由落体运动,安安静静的平躺在台面上,等待跟推板、其他金币和障碍物之间产生碰撞:

JavaScript

this.engine = Matter.Engine.create(); this.engine.world.gravity.y = 0;

1
2
this.engine = Matter.Engine.create();
this.engine.world.gravity.y = 0;

由于游戏主要逻辑都集中这个阶段,所以处理起来会稍微复杂些。真实情况下如果金币掉落并附着在推板上后,会跟随推板的伸缩而被带动,最终在推板缩进到最短时被背后的墙壁阻挡而挤下推板,此过程看起来简单但实现起来会非常耗时,最后因为时间上紧迫的这里也做了简化处理,就是不管推板是伸长还是缩进,都让推板上的金币向前「滑行」尽快脱离推板。一旦金币离开推板则立即为其创建同步的刚体,为后续的碰撞做准备,这样就完成了金币的碰撞处理。

JavaScript

Matter.Events.on(this.engine, ‘beforeUpdate’, function (event) { //
处理金币与推板碰撞 for (var i = 0; i < this.coins.length; i++) { var
coin = this.coins[i]; // 金币在推板上 if (coin.sprite.y <
this.pusher.y) { // 无论推板伸长/缩进金币都往前移动 if (deltaY > 0)
{ coin.sprite.y += deltaY; } else { coin.sprite.y -= deltaY; } //
金币缩放 if (coin.sprite.scaleX < 1) { coin.sprite.scaleX += 0.001;
coin.sprite.scaleY += 0.001; } } else { // 更新刚体坐标 if (coin.body) {
Matter.Body.set(coin.body, { position: { x: coin.sprite.x, y:
coin.sprite.y } }) } else { // 金币离开推板则创建对应刚体 coin.body =
Matter.Bodies.circle(coin.sprite.x, coin.sprite.y);
Matter.World.add(this.world, [coin.body]); } } } })

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Matter.Events.on(this.engine, ‘beforeUpdate’, function (event) {
  // 处理金币与推板碰撞
  for (var i = 0; i < this.coins.length; i++) {
    var coin = this.coins[i];
    // 金币在推板上
    if (coin.sprite.y < this.pusher.y) {
      // 无论推板伸长/缩进金币都往前移动
      if (deltaY > 0) {
        coin.sprite.y += deltaY;
      } else {
        coin.sprite.y -= deltaY;
      }
      // 金币缩放
      if (coin.sprite.scaleX < 1) {
        coin.sprite.scaleX += 0.001;
        coin.sprite.scaleY += 0.001;
      }
    } else {
      // 更新刚体坐标
      if (coin.body) {
        Matter.Body.set(coin.body, { position: { x: coin.sprite.x, y: coin.sprite.y } })
      } else {
        // 金币离开推板则创建对应刚体
        coin.body = Matter.Bodies.circle(coin.sprite.x, coin.sprite.y);
        Matter.World.add(this.world, [coin.body]);
      }
    }
  }
})
  • 第三阶段

随着金币不断的投放、碰撞和移动,最终金币会从台面的下边沿掉落并消失,此阶段的处理同第一阶段,这里就不重复了。

View

在 View 可以根据喜好选择一款游戏渲染引擎,笔者在 View 层选择了 PIXI
作为游戏游戏渲染引擎。

View 的任务主要有两个:

  1. 绘制游戏的界面;
  2. 渲染 Model 里的各种数据结构

也就是说 View
是使用渲染引擎还原设计稿的过程。本文的目的是介绍「贪吃蛇」的实现思路,如何使用一个渲染引擎不是本文讨论的范畴,笔者想介绍的是:「如何提高渲染的效率」。

在 View 中显示 Model 的蛇可以简单地如以下伪代码:

上面代码的时间复杂度是
O(n)。上面介绍过蛇的移动是一个高频的活动,我们要尽量避免高频率地运行
O(n) 的代码。来分析蛇的三种活动:「移动」,「吃食」,「碰撞」。
首先,Model 发生了「碰撞」,View 应该是直接暂停渲染 Model
里的状态,游戏处在死亡状态,接下来的事由 Control 处理。
Model
中的蛇(链表)在一次「移动」过程中做了两件事:向表头插入一个新节点,同时剔除表尾一个旧节点;蛇(链表)在一次「吃食」过程中只做一件事:向表头插入一个新节点

图片 8

如果在 View 中对 Model 的蛇链表做差异化检查,View
只增量更新差异部分的话,算法的时间复杂度即可降低至 O(1) ~ O(2)
。以下是优化后的伪代码:

奖品

由于奖品需要根据业务情况进行控制,所以把它跟金币进行了分离不做碰撞处理(内心是拒绝的),所以产生了「螃蟹步」现象,这里就不做过多介绍了。

Control

Control 主要做 3 件事:

  1. 游戏与用户的互动
  2. 驱动 Model
  3. 同步 View 与 Model

「游戏与用户的互动」是指向外提供游戏过程需要使用到的 APIs 与
各类事件。笔者规划的 APIs 如下:

name type deltail
init method 初始化游戏
start method 开始游戏
restart method 重新开始游戏
pause method 暂停
resume method 恢复
turn method 控制蛇的转向。如:turn(“left”)
destroy method 销毁游戏
speed property 蛇的移动速度

事件如下:

name detail
countdown 倒时计
eat 吃到食物
before-eat 吃到食物前触发
gameover 游戏结束

事件统一挂载在游戏实例下的 event 对象下。

「驱动 Model 」只做一件事 —— 将 Model
的蛇的方向更新为用户指定的方向

「同步 View 与 Model 」也比较简单,检查 Model 是否有更新,如果有更新通知
View 更新游戏界面。

Author

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章